A new non-convex model of the binary asteroid 90 Antiope obtained with the SAGE modelling technique

You are here: Home / Submitted Papers / 2014 / A new non-convex model of the binary asteroid 90 Antiope obtained with the SAGE modelling technique

Abstract

We present a new non-convex model of the 90 Antiope binary asteroid, derived with a modified version of the Shaping Asteroids with Genetic Evolution (SAGE) method using disc-integrated photometry only. A new variant of the SAGE algorithm capable of deriving models of binary systems is described. The model of 90 Antiope confirms the system’s pole solution (λ = 199°, β = 38°, σ = ±5°) and the orbital period (16.505 046 ± 0.000 005 h). A comparison between the stellar occultation chords obtained during the 2011 occultation and the projected shape solution has been used to scale the model. The resulting scaled model allowed us to obtain the equivalent radii (R1 = 40.4 ± 0.9 km and R2 = 40.2 ± 0.9 km) and the distance between the two system components (176 ± 4 km), leading to a total system mass of (9.14 ± 0.62) · 1017 kg. The non-convex shape description of the components permitted a refined calculation of the components’ volumes, leading to a density estimation of 1.67 ± 0.23 g cm-3. The intermediate-scale features of the model may also offer new clues on the components’ origin and evolution.

Author

Bartczak, P.; Michałowski, T.; Santana-Ros, T.; Dudziński, G.

Journal

Monthly Notices of the Royal Astronomical Society,

Paper Publication Date

September 2014

Paper Type

Astrostatistics