Improving cosmic string network simulations

You are here: Home / Submitted Papers / 2014 / Improving cosmic string network simulations

Abstract

In real-time lattice simulations of cosmic strings in the Abelian Higgs model, the broken translational invariance introduces lattice artifacts; relativistic strings therefore decelerate and radiate. We introduce two different methods to construct a moving string on the lattice, and study in detail the lattice effects on moving strings. We find that there are two types of lattice artifact: there is an effective maximum speed with which a moving string can be placed on the lattice, and a moving string also slows down, with the deceleration approximately proportional to the exponential of the velocity. To mitigate this, we introduce and study an improved discretization, based on the tree-level Lüscher-Weisz action, which is found to reduce the deceleration by an order of magnitude, and to increase the string speed limit by an amount equivalent to halving the lattice spacing. The improved algorithm is expected to be very useful for 3D simulations of cosmic strings in the early Universe, where one wishes to simulate as large a volume as possible.

Author

Hindmarsh, Mark; Rummukainen, Kari; Tenkanen, Tuomas V. I.; Weir, David J.

Journal

Physical Review D

Paper Publication Date

August 2014

Paper Type

Astrostatistics