Power Laws are Logarithmic Boltzmann Laws

You are here: Home / Submitted Papers / Pre-2010 / Power Laws are Logarithmic Boltzmann Laws

Abstract

Multiplicative random processes in (not necessarily equilibrium or steady state) stochastic systems with many degrees of freedom lead to Boltzmann distributions when the dynamics is expressed in terms of the logarithm of the elementary variables. In terms of the original variables this gives a power-law distribution. This mechanism implies certain relations between the constraints of the system, the power of the distribution and the dispersion law of the fluctuations. These predictions are validated by Monte Carlo simulations and experimental data. We speculate that stochastic multiplicative dynamics might be the natural origin for the emergence of criticality and scale hierarchies without fine-tuning.

Author

Levy, Moshe; Solomon, Sorin

Journal

International Journal of Modern Physics C

Paper Publication Date

1996

Paper Type

Astrostatistics